

Report Number: 23-004879/D006.R001

Report Date: 05/04/2023 **ORELAP#:** OR100028

Purchase Order:

Received: 04/21/23 12:39

This is an amended version of report# 23-004879/D006.R000. Reason: Combine results with report 23-005181/D002.R000.

Customer:

Product identity: BSD GVL-TST615

Client/Metrc ID:

Laboratory ID: 23-004879-0002

Summary

Potency:

alyte D	Result (%) 89.4		CBD-Total	89.4%
CBG CBT CBDV CBE	1.06 0.802 0.530 0.329	• CBD • CBG • CBT • CBDV • CBE	THC-Total (Reported in pe	<loq of="" rcent="" sampl<="" td="" total=""></loq>

Residual Solvents:

All analytes passing and less than LOQ.

Pesticides:

All analytes passing and less than LOQ.

Metals:

Less than LOQ for all analytes.

Microbiology:

Less than LOQ for all analytes.

Report Number: 23-004879/D006.R001

Report Date: 05/04/2023 **ORELAP#:** OR100028

Purchase Order:

Received: 04/21/23 12:39

Customer:

United States of America (USA)

Product identity: BSD GVL-TST615

Client/Metrc ID:

Sample Date:

Laboratory ID: 23-004879-0002

Evidence of Cooling: No
Temp: 24.3 °C
Relinquished by: client

Sample Results

Potency	Method: J AOAC 201	15 V98-6 (mod) Units %	Batch: 2306682	Analyze: 4/25/23	4:56:00 AM
Analyte	As Dry Received weig	LOQ ht	Notes			
CBC	<loq< td=""><td>0.0706</td><td></td><td></td><td></td><td></td></loq<>	0.0706				
CBC-A	<loq< td=""><td>0.0706</td><td></td><td></td><td></td><td>CBD</td></loq<>	0.0706				CBD
CBC-Total	<loq< td=""><td>0.133</td><td></td><td></td><td></td><td>CBG</td></loq<>	0.133				CBG
CBD [⊥]	89.4	0.706				CBT
CBD-A [⊥]	<loq< td=""><td>0.0706</td><td></td><td></td><td></td><td>CBDV</td></loq<>	0.0706				CBDV
CBD-Total	89.4	0.768				CBE
CBDV	0.530	0.0706				
CBDV-A	<loq< td=""><td>0.0706</td><td></td><td></td><td></td><td></td></loq<>	0.0706				
CBDV-Total	0.530	0.132				
CBE	0.329	0.0706				
CBG	1.06	0.0706				
CBG-A	<loq< td=""><td>0.0706</td><td></td><td></td><td></td><td></td></loq<>	0.0706				
CBG-Total	1.06	0.132				
CBL	<loq< td=""><td>0.0706</td><td></td><td></td><td></td><td></td></loq<>	0.0706				
CBL-A	<loq< td=""><td>0.0706</td><td></td><td></td><td></td><td></td></loq<>	0.0706				
CBL-Total	<loq< td=""><td>0.133</td><td></td><td></td><td></td><td></td></loq<>	0.133				
CBN	<loq< td=""><td>0.0706</td><td></td><td></td><td></td><td></td></loq<>	0.0706				
CBT	0.802	0.0706				
Δ10-THC-9R	<loq< td=""><td>0.0706</td><td></td><td></td><td></td><td></td></loq<>	0.0706				
Δ10-THC-9S	<loq< td=""><td>0.0706</td><td></td><td></td><td></td><td></td></loq<>	0.0706				
$\Delta 10$ -THC-Total	<loq< td=""><td>0.141</td><td></td><td></td><td></td><td></td></loq<>	0.141				
Δ8-THC [⊥]	<loq< td=""><td>0.0706</td><td></td><td></td><td></td><td></td></loq<>	0.0706				
Δ8-THCV	<loq< td=""><td>0.0706</td><td></td><td></td><td></td><td></td></loq<>	0.0706				
Δ9-THC [⊥]	<loq< td=""><td>0.0706</td><td></td><td></td><td></td><td></td></loq<>	0.0706				
exo-THC	<loq< td=""><td>0.0706</td><td></td><td></td><td></td><td></td></loq<>	0.0706				
THC-A [⊥]	<loq< td=""><td>0.0706</td><td></td><td></td><td></td><td></td></loq<>	0.0706				
THC-Total	<loq< td=""><td>0.133</td><td></td><td></td><td></td><td></td></loq<>	0.133				
THCV	<loq< td=""><td>0.0706</td><td></td><td></td><td></td><td></td></loq<>	0.0706				
THCV-A	<loq< td=""><td>0.0706</td><td></td><td></td><td></td><td></td></loq<>	0.0706				
THCV-Total	<loq< td=""><td>0.132</td><td></td><td></td><td></td><td></td></loq<>	0.132				
Total Cannabinoids	92.1					

Report Number: 23-005181/D002.R000

Report Date: 05/04/2023 ORELAP#: OR100028

Purchase Order:

04/28/23 00:00 Received:

Customer: $\times\!\!\times\!\!\times\!\!\times\!\!\times$

United States of America (USA)

Product identity: BSD GVL-TST615

Client/Metrc ID:

Sample Date:

Laboratory ID: 23-005181-0001

Evidence of Cooling: No 25 °C Temp:

Sample Results

Microbiology										
Analyte	Result	Limits Units	LOQ	Batch	Analyzed Method	Status Notes				
E.coli	<loq< td=""><td>cfu/g</td><td>10</td><td>2306862</td><td>05/03/23 AOAC 991.14 (Petrifilm)^b</td><td></td></loq<>	cfu/g	10	2306862	05/03/23 AOAC 991.14 (Petrifilm) ^b					
Total Coliforms	< LOQ	cfu/g	10	2306862	05/03/23 AOAC 991.14 (Petrifilm) ^p					
Mold (RAPID Petrifilm)	< LOQ	cfu/ml	10	2306863	05/04/23 AOAC 2014.05 (RAPID) ^p					
Yeast (RAPID Petrifilm)	< LOQ	cfu/ml	10	2306863	05/04/23 AOAC 2014.05 (RAPID) ^b					

Solvents	Method:	Residua	Solve	ents by	GC/MS ^p	Units μg/g B	atch 23	06966	Analyz	e 05/0	03/23 (2:34 PM
Analyte	Result	Limits	LOQ	Status	Notes	Analyte		Result	Limits	LOQ	Status	Notes
1,4-Dioxane	<loq< td=""><td>380</td><td>100</td><td>pass</td><td></td><td>2-Butanol</td><td></td><td><loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<></td></loq<>	380	100	pass		2-Butanol		<loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<>	5000	200	pass	
2-Ethoxyethanol	<loq< td=""><td>160</td><td>30.0</td><td>pass</td><td></td><td>2-Methylbutane (Isopentane)</td><td></td><td><loq< td=""><td></td><td>200</td><td></td><td></td></loq<></td></loq<>	160	30.0	pass		2-Methylbutane (Isopentane)		<loq< td=""><td></td><td>200</td><td></td><td></td></loq<>		200		
2-Methylpentane	<loq< td=""><td></td><td>30.0</td><td></td><td></td><td>2-Propanol (IPA)</td><td>1</td><td><loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<></td></loq<>		30.0			2-Propanol (IPA)	1	<loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<>	5000	200	pass	
2,2-Dimethylbutane	<loq< td=""><td></td><td>30.0</td><td></td><td></td><td>2,2-Dimethylprop (neo-pentane)</td><td>ane</td><td><loq< td=""><td></td><td>200</td><td></td><td></td></loq<></td></loq<>		30.0			2,2-Dimethylprop (neo-pentane)	ane	<loq< td=""><td></td><td>200</td><td></td><td></td></loq<>		200		
2,3-Dimethylbutane	<loq< td=""><td></td><td>30.0</td><td></td><td></td><td>3-Methylpentane</td><td></td><td><loq< td=""><td></td><td>30.0</td><td></td><td></td></loq<></td></loq<>		30.0			3-Methylpentane		<loq< td=""><td></td><td>30.0</td><td></td><td></td></loq<>		30.0		
Acetone	<loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td><td>Acetonitrile</td><td></td><td><loq< td=""><td>410</td><td>100</td><td>pass</td><td></td></loq<></td></loq<>	5000	200	pass		Acetonitrile		<loq< td=""><td>410</td><td>100</td><td>pass</td><td></td></loq<>	410	100	pass	
Benzene	<loq< td=""><td>2.00</td><td>1.00</td><td>pass</td><td></td><td>Butanes (sum)</td><td></td><td><loq< td=""><td>5000</td><td>400</td><td>pass</td><td></td></loq<></td></loq<>	2.00	1.00	pass		Butanes (sum)		<loq< td=""><td>5000</td><td>400</td><td>pass</td><td></td></loq<>	5000	400	pass	
Cyclohexane	<loq< td=""><td>3880</td><td>200</td><td>pass</td><td></td><td>Ethyl acetate</td><td></td><td><loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<></td></loq<>	3880	200	pass		Ethyl acetate		<loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<>	5000	200	pass	
Ethyl benzene	<loq< td=""><td></td><td>200</td><td></td><td></td><td>Ethyl ether</td><td></td><td><loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<></td></loq<>		200			Ethyl ether		<loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<>	5000	200	pass	
Ethylene glycol	<loq< td=""><td>620</td><td>200</td><td>pass</td><td></td><td>Ethylene oxide</td><td></td><td><loq< td=""><td>50.0</td><td>20.0</td><td>pass</td><td></td></loq<></td></loq<>	620	200	pass		Ethylene oxide		<loq< td=""><td>50.0</td><td>20.0</td><td>pass</td><td></td></loq<>	50.0	20.0	pass	
Hexanes (sum)	<loq< td=""><td>290</td><td>150</td><td>pass</td><td></td><td>Isopropyl acetate</td><td>;</td><td><loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<></td></loq<>	290	150	pass		Isopropyl acetate	;	<loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<>	5000	200	pass	
Isopropylbenzene (Cumene)	<loq< td=""><td>70.0</td><td>30.0</td><td>pass</td><td></td><td>m,p-Xylene</td><td></td><td><loq< td=""><td></td><td>200</td><td></td><td></td></loq<></td></loq<>	70.0	30.0	pass		m,p-Xylene		<loq< td=""><td></td><td>200</td><td></td><td></td></loq<>		200		
Methanol	<loq< td=""><td>3000</td><td>200</td><td>pass</td><td></td><td>Methylene chloric</td><td>de</td><td><loq< td=""><td>600</td><td>60.0</td><td>pass</td><td></td></loq<></td></loq<>	3000	200	pass		Methylene chloric	de	<loq< td=""><td>600</td><td>60.0</td><td>pass</td><td></td></loq<>	600	60.0	pass	
Methylpropane (Isobutane)	<loq< td=""><td></td><td>200</td><td></td><td></td><td>n-Butane</td><td></td><td><loq< td=""><td></td><td>200</td><td></td><td></td></loq<></td></loq<>		200			n-Butane		<loq< td=""><td></td><td>200</td><td></td><td></td></loq<>		200		
n-Heptane	<loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td><td>n-Hexane</td><td></td><td><loq< td=""><td></td><td>30.0</td><td></td><td></td></loq<></td></loq<>	5000	200	pass		n-Hexane		<loq< td=""><td></td><td>30.0</td><td></td><td></td></loq<>		30.0		
n-Pentane	<loq< td=""><td></td><td>200</td><td></td><td></td><td>o-Xylene</td><td></td><td><loq< td=""><td></td><td>200</td><td></td><td></td></loq<></td></loq<>		200			o-Xylene		<loq< td=""><td></td><td>200</td><td></td><td></td></loq<>		200		
Pentanes (sum)	<loq< td=""><td>5000</td><td>600</td><td>pass</td><td></td><td>Propane</td><td></td><td><loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<></td></loq<>	5000	600	pass		Propane		<loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<>	5000	200	pass	
Tetrahydrofuran	<loq< td=""><td>720</td><td>100</td><td>pass</td><td></td><td>Toluene</td><td></td><td><loq< td=""><td>890</td><td>100</td><td>pass</td><td></td></loq<></td></loq<>	720	100	pass		Toluene		<loq< td=""><td>890</td><td>100</td><td>pass</td><td></td></loq<>	890	100	pass	
Total Xylenes	<loq< td=""><td></td><td>400</td><td></td><td></td><td>Total Xylenes an benzene</td><td>d Ethyl</td><td><loq< td=""><td>2170</td><td>600</td><td>pass</td><td></td></loq<></td></loq<>		400			Total Xylenes an benzene	d Ethyl	<loq< td=""><td>2170</td><td>600</td><td>pass</td><td></td></loq<>	2170	600	pass	

Report Number: 23-005181/D002.R000

Report Date: 05/04/2023 ORELAP#: OR100028

Purchase Order:

04/28/23 00:00 Received:

Pesticides	Method: AO	AC 200	7.01 & EN 15662 (mod) ^p	Units mg/kg Batch	2306954	Analy	rze 05/03/23 10:31 AM
Analyte	Result	Limits	s LOQ Status Notes	Analyte	Result	Limits	s LOQ Status Notes
Abamectin*	<loq< td=""><td>0.50</td><td>0.250 pass</td><td>Acephate*</td><td><loq< td=""><td>0.40</td><td>0.200 pass</td></loq<></td></loq<>	0.50	0.250 pass	Acephate*	<loq< td=""><td>0.40</td><td>0.200 pass</td></loq<>	0.40	0.200 pass
Acequinocyl*	<loq< td=""><td>2.0</td><td>1.00 pass</td><td>Acetamiprid*</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td></loq<></td></loq<>	2.0	1.00 pass	Acetamiprid*	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Aldicarb*	<loq< td=""><td>0.40</td><td>0.200 pass</td><td>Azoxystrobin*</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td></loq<></td></loq<>	0.40	0.200 pass	Azoxystrobin*	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Bifenazate*	<loq< td=""><td>0.20</td><td>0.100 pass</td><td>Bifenthrin¥</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td></loq<></td></loq<>	0.20	0.100 pass	Bifenthrin¥	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Boscalid [¥]	<loq< td=""><td>0.40</td><td>0.200 pass</td><td>Carbaryl*</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td></loq<></td></loq<>	0.40	0.200 pass	Carbaryl*	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Carbofuran*	<loq< td=""><td>0.20</td><td>0.100 pass</td><td>Chlorantraniliprole*</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td></loq<></td></loq<>	0.20	0.100 pass	Chlorantraniliprole*	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Chlorfenapyr*	<loq< td=""><td>1.0</td><td>0.500 pass</td><td>Chlorpyrifos*</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td></loq<></td></loq<>	1.0	0.500 pass	Chlorpyrifos*	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Clofentezine*	<loq< td=""><td>0.20</td><td>0.100 pass</td><td>Cyfluthrin¥</td><td><loq< td=""><td>1.0</td><td>0.500 pass</td></loq<></td></loq<>	0.20	0.100 pass	Cyfluthrin¥	<loq< td=""><td>1.0</td><td>0.500 pass</td></loq<>	1.0	0.500 pass
Cypermethrin*	<loq< td=""><td>1.0</td><td>0.500 pass</td><td>Daminozide*</td><td><loq< td=""><td>1.0</td><td>0.500 pass</td></loq<></td></loq<>	1.0	0.500 pass	Daminozide*	<loq< td=""><td>1.0</td><td>0.500 pass</td></loq<>	1.0	0.500 pass
Diazinon¥	<loq< td=""><td>0.20</td><td>0.100 pass</td><td>Dichlorvos*</td><td><loq< td=""><td>1.0</td><td>0.500 pass</td></loq<></td></loq<>	0.20	0.100 pass	Dichlorvos*	<loq< td=""><td>1.0</td><td>0.500 pass</td></loq<>	1.0	0.500 pass
Dimethoate*	<loq< td=""><td>0.20</td><td>0.100 pass</td><td>Ethoprophos*</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td></loq<></td></loq<>	0.20	0.100 pass	Ethoprophos*	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Etofenprox*	<loq< td=""><td>0.40</td><td>0.200 pass</td><td>Etoxazole*</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td></loq<></td></loq<>	0.40	0.200 pass	Etoxazole*	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Fenoxycarb*	<loq< td=""><td>0.20</td><td>0.100 pass</td><td>Fenpyroximate*</td><td><loq< td=""><td>0.40</td><td>0.200 pass</td></loq<></td></loq<>	0.20	0.100 pass	Fenpyroximate*	<loq< td=""><td>0.40</td><td>0.200 pass</td></loq<>	0.40	0.200 pass
Fipronil*	<loq< td=""><td>0.40</td><td>0.200 pass</td><td>Flonicamid¥</td><td><loq< td=""><td>1.0</td><td>0.400 pass</td></loq<></td></loq<>	0.40	0.200 pass	Flonicamid¥	<loq< td=""><td>1.0</td><td>0.400 pass</td></loq<>	1.0	0.400 pass
Fludioxonil*	<loq< td=""><td>0.40</td><td>0.200 pass</td><td>Hexythiazox*</td><td><loq< td=""><td>1.0</td><td>0.400 pass</td></loq<></td></loq<>	0.40	0.200 pass	Hexythiazox*	<loq< td=""><td>1.0</td><td>0.400 pass</td></loq<>	1.0	0.400 pass
lmazalil*	<loq< td=""><td>0.20</td><td>0.100 pass</td><td>Imidacloprid*</td><td><loq< td=""><td>0.40</td><td>0.200 pass</td></loq<></td></loq<>	0.20	0.100 pass	Imidacloprid*	<loq< td=""><td>0.40</td><td>0.200 pass</td></loq<>	0.40	0.200 pass
Kresoxim-methyl*	<loq< td=""><td>0.40</td><td>0.200 pass</td><td>Malathion*</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td></loq<></td></loq<>	0.40	0.200 pass	Malathion*	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Metalaxyl*	<loq< td=""><td>0.20</td><td>0.100 pass</td><td>Methiocarb*</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td></loq<></td></loq<>	0.20	0.100 pass	Methiocarb*	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Methomyl¥	<loq< td=""><td>0.40</td><td>0.200 pass</td><td>MGK-264*</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td></loq<></td></loq<>	0.40	0.200 pass	MGK-264*	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Myclobutanil*	< LOQ	0.20	0.100 pass	Naled [¥]	<loq< td=""><td>0.50</td><td>0.250 pass</td></loq<>	0.50	0.250 pass
Oxamyl*	< LOQ	1.0	0.500 pass	Paclobutrazole*	<loq< td=""><td>0.40</td><td>0.200 pass</td></loq<>	0.40	0.200 pass
Parathion-Methyl*	< LOQ	0.20	0.100 pass	Permethrin*	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Phosmet*	< LOQ	0.20	0.100 pass	Piperonyl butoxide*	<loq< td=""><td>2.0</td><td>1.00 pass</td></loq<>	2.0	1.00 pass
Prallethrin*	<loq< td=""><td>0.20</td><td>0.100 pass</td><td>Propiconazole*</td><td><loq< td=""><td>0.40</td><td>0.200 pass</td></loq<></td></loq<>	0.20	0.100 pass	Propiconazole*	<loq< td=""><td>0.40</td><td>0.200 pass</td></loq<>	0.40	0.200 pass
Propoxur*	<loq< td=""><td>0.20</td><td>0.100 pass</td><td>Pyrethrin I (total)*</td><td><loq< td=""><td>1.0</td><td>0.500 pass</td></loq<></td></loq<>	0.20	0.100 pass	Pyrethrin I (total)*	<loq< td=""><td>1.0</td><td>0.500 pass</td></loq<>	1.0	0.500 pass
Pyridaben*	<loq< td=""><td>0.20</td><td>0.100 pass</td><td>Spinosad*</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td></loq<></td></loq<>	0.20	0.100 pass	Spinosad*	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Spiromesifen*	<loq< td=""><td>0.20</td><td>0.100 pass</td><td>Spirotetramat*</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td></loq<></td></loq<>	0.20	0.100 pass	Spirotetramat*	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Spiroxamine*	<loq< td=""><td>0.40</td><td>0.200 pass</td><td>Tebuconazole*</td><td><loq< td=""><td>0.40</td><td>0.200 pass</td></loq<></td></loq<>	0.40	0.200 pass	Tebuconazole*	<loq< td=""><td>0.40</td><td>0.200 pass</td></loq<>	0.40	0.200 pass
Thiacloprid*	<loq< td=""><td>0.20</td><td>0.100 pass</td><td>Thiamethoxam*</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td></loq<></td></loq<>	0.20	0.100 pass	Thiamethoxam*	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Trifloxystrobin*	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td></td><td></td><td></td></loq<>	0.20	0.100 pass				

Metals							
Analyte	Result	Limits	Units	LOQ	Batch	Analyzed Method	Status Notes
Arsenic*	< LOQ	0.200	mg/kg	0.0803	2306940	05/02/23 AOAC 2013.06 (mod.) ^b	pass
Cadmium¥	<loq< td=""><td>0.200</td><td>mg/kg</td><td>0.0803</td><td>2306940</td><td>05/02/23 AOAC 2013.06 (mod.)^b</td><td>pass</td></loq<>	0.200	mg/kg	0.0803	2306940	05/02/23 AOAC 2013.06 (mod.) ^b	pass
Lead [¥]	<loq< td=""><td>0.500</td><td>mg/kg</td><td>0.0803</td><td>2306940</td><td>05/02/23 AOAC 2013.06 (mod.)^b</td><td>pass</td></loq<>	0.500	mg/kg	0.0803	2306940	05/02/23 AOAC 2013.06 (mod.) ^b	pass
Mercury¥	< LOQ	0.100	mg/kg	0.0401	2306940	05/02/23 AOAC 2013.06 (mod.) ^b	pass

Report Number: 23-004879/D006.R001

Report Date: 05/04/2023 **ORELAP#:** OR100028

Purchase Order:

Received: 04/21/23 12:39

Abbreviations

Limits: Action Levels per OAR-333-007-0400, OAR-333-007-0210, OAR-333-007-0220, CCR title 16-division 42. BCC-section 5723

Limit(s) of Quantitation (LOQ): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.

* = TNI accredited analyte.

Units of Measure

% = Percentage of sample % wt = μ g/g divided by 10,000

Approved Signatory

Derrick Tanner General Manager